Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.7 Rectilinear Motion Revisited Using Integration - Exercises Set 4.7 - Page 330: 30

Answer

a) Until the speed reaches $45 \mathrm{mi} / \mathrm{h}$, Car takes 2 seconds b) Before stopping, Car travels $352 \mathrm{ft}$

Work Step by Step

$(a)$ \[ \begin{array}{c} v=60 \mathrm{mi} / \mathrm{h}=88 \mathrm{ft} / \mathrm{s} \\ \qquad -11=a(t) \\ \therefore v(t)=\int a(t) d t=-11 \int d t=11 t+C \\ \because v(0)=88 \Rightarrow C=88 \\ v(t)=88-11 t \end{array} \] When $v(t)=45 \mathrm{mi} / \mathrm{h}=66 \mathrm{ft} / \mathrm{s}$ \[ \therefore 66=88-11 t \Rightarrow 2 s=t \] And therefore, for the speed to reach $45 \mathrm{mi} / \mathrm{h}$, Car takes 2 seconds $(b)$ \[ x(t)=\int(88-11 t) d t=88 t-\frac{11 t^{2}}{2}+C \] When $t=0 \Rightarrow x(0)=0 \Rightarrow C=0$ $\therefore x(t)=-\frac{11 t^{2}}{2}+88 t$ When the car stops $v(t)=0 \Rightarrow 0=88-11 t \Rightarrow 8 s=t$ \[ x(t)=88(8)-\frac{11(8)^{2}}{2}=352 \] And therefore, before stopping, the car travels $352 \mathrm{ft}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.