Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.7 Rectilinear Motion Revisited Using Integration - Exercises Set 4.7 - Page 330: 18

Answer

$\text {(a) velocity = speed = 0.5 m/s}$ $\text {acceleration = $-\frac{\sqrt{3}\pi}{6}$ m/$s^2$ }$ $\text {position = $\frac{3}{\pi}(\frac{\sqrt{3}}{2}-1)$ m}$ $\text {(b) velocity = speed = 1.75 m/s}$ $\text {acceleration = 4 m/$s^2$ }$ $\text {position = 1.283 m}$

Work Step by Step

$\text {It is given that}$ $\text {(a)}$ \begin{align} v(t) = \cos {\frac{\pi}{3}t}; s = 0m \ when \ t = 1.5 s \end{align} $\text {Velocity at t = 1s:}$ \begin{align} v(1) = \cos {\frac{\pi}{3}} = \frac{1}{2} m/s \end{align} $\text {Speed at t = 1s:}$ \begin{align} v(1) = | \cos {\frac{\pi}{3}}| = \frac{1}{2} m/s \end{align} $\text {Acceleration at t = 1s:}$ \begin{align} & a(t) = v'(t) = -\frac{\pi}{3} \times \sin {\frac{\pi}{3}t} \\ & a(1) = -\frac{\pi}{3} \times \frac{\sqrt{3}}{2} = -\frac{\sqrt{3}\pi}{6} \end{align} $\text {Position at t = 1s:}$ \begin{align} s(t) = \int v(t) \ dt = \int \cos {\frac{\pi}{3}t} \ dt = \frac{3}{\pi}\sin {\frac{\pi}{3}t} + C \end{align} $\text{By appying the initially given conditions, we can find C:}$ \begin{align} & 0 = \frac{3}{\pi}\sin {\frac{\pi}{2}} + C \\ & 0 = \frac{3}{\pi} + C \\ & C = -\frac{3}{\pi} \\ s(t) = &\frac{3}{\pi}\sin {\frac{\pi}{3}t} -\frac{3}{\pi} \\ s(1) = &\frac{3}{\pi}\sin {\frac{\pi}{3}} -\frac{3}{\pi} = \frac{3}{\pi}(\frac{\sqrt{3}}{2}-1) \end{align} $\text {It is given that}$ $\text {(b)}$ \begin{align} a(t) = 5t - t^3; s = 1m \ \ and \ \ v = -0.5 m/s \ \ when \ \ t = 0s \end{align} $\text {Acceleration at t = 1s:}$ \begin{align} a(1) = 5-1=4m/s^2 \end{align} $\text {Velocity at t = 1s:}$ \begin{align} v(t) = \int a(t) \ dt = \int (5t - t^3) \ dt = \frac{5t^2}{2}-\frac{t^4}{4} + C_1 \end{align} $\text{By appying the initially given conditions, we can find $C_1$:}$ \begin{align} &C_1 = -0.5 \\ v(t) = &\frac{5t^2}{2}-\frac{t^4}{4} - 0.5 \\ &v(1) = 1.75 m/s \end{align} $\text {Speed at t = 1s:}$ \begin{align} v(1) = |\frac{5t^2}{2}-\frac{t^4}{4} - 0.5| = 1.75m/s \end{align} $\text {Position at t = 1s:}$ \begin{align} s(t) = \int v(t) \ dt = \int (\frac{5t^2}{2}-\frac{t^4}{4} - 0.5) \ dt = \frac{5t^3}{6}-\frac{t^5}{20} - 0.5t + C_2 \end{align} $\text{By appying the initially given conditions, we can find $C_2$:}$ \begin{align} & C_2 = 1 \\ s(t) = &\frac{5t^3}{6}-\frac{t^5}{20} - 0.5t + 1 \\ & s(1) = 1.283m \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.