Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.7 Rectilinear Motion Revisited Using Integration - Exercises Set 4.7 - Page 330: 13

Answer

Distance $=\frac{13}{3} m$ Displacement $=4 \mathrm{m}$

Work Step by Step

We have $ v(0)=-1$, a(t)=3 at $0 \leq t \leq 2$ \[ \begin{aligned} \therefore v(t) &=\int_{0}^{2} a(t) d t \\ &=3 \int_{0}^{2} d t=C+3 t \\ v(0)=-1 &=C+0 \\ -1=C & \\ \therefore v(t) &=-1+3 t \end{aligned} \] Displacement \[ s(t)=\int_{0}^{2}(-1+3 t) d t=\left.\left(\frac{-t+3 t^{2}}{2}\right)\right|_{0} ^{2}=4 \] Distance \[ \begin{aligned} \int_{0}^{2}|-1+3 t| d t &=-\int_{0}^{\frac{1}{3}}(-1+3 t) d t+\int_{\frac{1}{3}}^{2}(-1+3 t) d t \\ &=-\left.\left(-t+\frac{3 t^{2}}{2}\right)\right|_{0} ^{\frac{1}{3}}+\left.\left(-t+\frac{3 t^{2}}{2}\right)\right|_{\frac{1}{3}} ^{2} \end{aligned} \] \[ \begin{array}{l} =\left(\frac{1}{6}+4\right)+\frac{1}{6} \\ =\frac{25}{6}+\frac{1}{6} \end{array} \] $=\left[\frac{13}{3}\right] m$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.