Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.7 Rectilinear Motion Revisited Using Integration - Exercises Set 4.7 - Page 330: 14

Answer

$$ \begin{array}{c} \text { The distance }=\frac{17}{3} \quad \mathrm{m} \\ \text { The displacement }=-\frac{10}{3} \mathrm{m} \end{array} $$

Work Step by Step

\begin{aligned} &\text { You have } a(t)=t-2, v_{0}=0,1 \leq t \leq 5\\ &\text { We will find the velocity : }\\ \int(t-2) d t=\frac{t^{2}}{2}-2 t+C=&v(t)\\ &v(0)=0=0-0+C \Rightarrow 0=C\\ &\therefore \frac{t^{2}}{2}-2 t=v(t) \end{aligned} The displacement =: $$ s(t)=\int_{1}^{5}\left(\frac{t^{2}}{2}-2 t\right) d t=\left.\left(\frac{t^{3}}{6}-t^{2}\right)\right|_{1} ^{5}=\left(\frac{125}{6}-25\right)-\left(\frac{1}{6}-1\right)=\sqrt{\frac{-10}{3} m} $$ The distance: $$ \begin{array}{c} \int_{1}^{5}\left|\left(\frac{t^{2}}{2}-2 t\right)\right| d t=-\int_{1}^{4}\left(\frac{t^{2}}{2}-2 t\right) d t+\int_{4}^{5}\left(\frac{t^{2}}{2}-2 t\right) d t \\ =-\left.\left(\frac{t^{3}}{6}-t^{2}\right)\right|_{1} ^{4}+\left.\left(\frac{t^{3}}{6}-t^{2}\right)\right|_{4} ^{5} \\ =\frac{7}{6}+\frac{27}{6} \\ \left.=\frac{17}{3} m\right] \\ \end{array} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.