Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.4 Surface Area; Parametric Surfaces - Exercises Set 14.4 - Page 1036: 4

Answer

$$S=\frac{3 \sqrt{3}} {5}$$

Work Step by Step

We find: \[ \begin{array}{c} S=\int_{0}^{1} \int_{0}^{y} \sqrt{1+2+2 y} d x d y \\ S=\iint_{R} \sqrt{\frac{\delta z}{\delta x}+\frac{\delta z}{\delta y}+\frac{\delta z}{\delta z}} d A \\ S=\int_{0}^{1} \sqrt{2 y+3}[x]_{0}^{y} d y \end{array} \] \[ \int_{0}^{1} \sqrt{2 y+3} y d y=S \] \[ \left[\frac{1}{5}(y-1)(3+2 y)^{\frac{3}{2}}\right]=S \] Evaluating: $$S=\frac{3 \sqrt{3}} {5}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.