Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.4 Surface Area; Parametric Surfaces - Exercises Set 14.4 - Page 1036: 24

Answer

\[ r=z, \quad y=r \sin \theta, \quad x=r \cos \theta, \quad \text { where }\left\{\begin{array}{l} 0 \leq \theta \leq 2 \pi \\ 0 \leq r \leq 3 \end{array}\right. \]

Work Step by Step

If we use cylindrical coordenates \[ z=z, \quad r \sin \theta=y, \quad r \cos \theta=x \] and then \[ z=\sqrt{x^{2}+y^{2}}=\sqrt{r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta}=\sqrt{r^{2}}=r \] Since $z=\sqrt{x^{2}+y^{2}} \geq 0$ and $r \leq 3$, then $0 \leq r \leq 3 .$ Using this, we can parametrize the surface: \[ r=z, \quad y=r \sin \theta, \quad x=r \cos \theta, \quad \text { where }\left\{\begin{array}{l} 0 \leq \theta \leq 2 \pi \\ 0 \leq r \leq 3 \end{array}\right. \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.