Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.4 Surface Area; Parametric Surfaces - Exercises Set 14.4 - Page 1036: 22

Answer

\[ r^{2} \cos 2 \theta=z, r \cos \theta=x, r \sin \theta=y \]

Work Step by Step

\[ \begin{array}{l} \qquad r \cos \theta=x, r \sin \theta=y \\ \Rightarrow z=y^{2} x^{2}=(r \cos \theta)^{2}(r \sin \theta)^{2}=r^{2}\left(\cos ^{2} \theta \sin ^{2} \theta\right)=r^{2} \cos 2 \theta \quad\left(\because \cos 2 \theta=\cos ^{2} \theta \sin ^{2} \theta\right) \end{array} \] So, the surface can be represented parametrically as: \[ r^{2} \cos 2 \theta=z, r \cos \theta=x, r \sin \theta=y \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.