Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.4 Surface Area; Parametric Surfaces - Exercises Set 14.4 - Page 1036: 21

Answer

\[ r \cos \theta=x, r \sin \theta=y, \quad r^{2} \sin 2 \theta=z \]

Work Step by Step

\[ \begin{array}{l} \qquad r \sin \theta=y , r \cos \theta=x \\ \Rightarrow z=2 x y=2(r \cos \theta)(r \sin \theta)=2 r^{2} \cos \theta \sin \theta=r^{2} \sin 2 \theta \quad(\because \sin 2 \theta=2 \cos \theta \sin \theta) \end{array} \] So, the surface can be represented parametrically in terms of r and $\theta$ аs \[ x=r \cos \theta, y=r \sin \theta, \quad z=r^{2} \sin 2 \theta \] \[ r \cos \theta=x, r \sin \theta=y, \quad r^{2} \sin 2 \theta=z \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.