Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.4 Surface Area; Parametric Surfaces - Exercises Set 14.4 - Page 1036: 23

Answer

\[ 3 \cos \theta=x, 3 \sin \theta=y, z=\sqrt{9-r^{2}} \text { where }\left\{\begin{array}{l} 0 \leq \theta \leq 2 \pi \\ 0 \leq r \leq \sqrt{5} \end{array}\right. \]

Work Step by Step

If we use cylindrical coordinates \[ z=z , \quad r \sin \theta=y, \quad r\cos \theta=x \] and then \[ \begin{aligned} x^{2}+y^{2}+z^{2}=9 & \Rightarrow r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta+z^{2} \\ & \Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+z^{2}=9 \\ & \Rightarrow r^{2}+z^{2}=9 \Rightarrow z=\pm \sqrt{9-r^{2}} \end{aligned} \] So, the surface can be represented parametrically as: \[ 3 \cos \theta=x, 3 \sin \theta=y, z=\sqrt{9-r^{2}} \text { where }\left\{\begin{array}{l} 0 \leq \theta \leq 2 \pi \\ 0 \leq r \leq \sqrt{5} \end{array}\right. \] because \[ 2 \leq z \leq 3 \Rightarrow 4 \leq 9-r^{2} \leq 9 \Rightarrow 0 \leq r^{2} \leq 5 \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.