Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.4 Surface Area; Parametric Surfaces - Exercises Set 14.4 - Page 1036: 19

Answer

\[ r \cos \theta=x, r \sin \theta=y, \quad z=\frac{1}{r^{2}+1} \]

Work Step by Step

\[ \begin{array}{l} \qquad r \sin \theta=y \theta, \quad r \cos =x \\ \Rightarrow z=\frac{1}{1+(r \cos \theta)^{2}+(r \sin \theta)^{2}}=\frac{1}{1+r^{2}\left[\cos ^{2} \theta+\sin ^{2} \theta\right]}=\frac{1}{1+r^{2}} \quad\left(\cos ^{2} \theta+\sin ^{2} \theta=1\right) \end{array} \] So, the surface can be represented parametrically in terms of $r$ and and theta: \[ r \cos \theta=x, r \sin \theta=y, \quad z=\frac{1}{r^{2}+1} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.