Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.4 Surface Area; Parametric Surfaces - Exercises Set 14.4 - Page 1036: 20

Answer

\[ r \cos \theta=x, r \sin \theta=y, \quad e^{-r^{2}}=z \]

Work Step by Step

\[ \begin{array}{c} r \sin \theta=y, \quad r \cos \theta=x\\ \Rightarrow z=e^{-\left(x^{2}+y^{2}\right)}=e^{-\left(r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta\right)}=e^{-r^{2}} \quad\left(\because1= \cos ^{2} \theta+\sin ^{2} \theta \right) \end{array} \] So, the surface can be represented parametrically in terms of $r$ and $\theta$ as: \[ r \cos \theta=x, r \sin \theta=y, \quad e^{-r^{2}}=z \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.