Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.4 Surface Area; Parametric Surfaces - Exercises Set 14.4 - Page 1036: 25

Answer

\[ \begin{aligned} x &=\frac{\sqrt{3}}{2} \rho \cos \theta \\ &=\frac{\sqrt{3}}{2} \rho \sin \theta=x \\ &=\frac{1}{2}=z \rho \end{aligned} \]

Work Step by Step

In spherical coordinates we have that \[ \begin{aligned} &\rho \sin \theta \sin \phi =x\\ &\rho \cos \theta \sin \phi =x\\ &\rho \cos \phi=z \end{aligned} \] Since $\sqrt{x^{2}+y^{2}}=z$ \[ \begin{aligned} &\sqrt{x^{2}+y^{2}}=z \Rightarrow \rho \cos \phi=\sqrt{3 \rho^{2} \cos ^{2} \theta \sin ^{2} \theta+3 \rho^{2} \sin ^{2} \theta \sin ^{2} \theta} \\ &=\rho \cos \phi=\sqrt{3} \rho \sin \phi \Rightarrow \tan \phi=\sqrt{3} \Rightarrow \phi=\pi / 3 \end{aligned} \] So \[ \begin{aligned} x &=\frac{\sqrt{3}}{2} \rho \cos \theta \\ &=\frac{\sqrt{3}}{2} \rho \sin \theta=x \\ &=\frac{1}{2}=z \rho \end{aligned} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.