Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.4 Differentiability, Differentials, And Local Linearity - Exercises Set 13.4 - Page 948: 57

Answer

$0.3 \%$

Work Step by Step

The period $\mathrm{T}$ of a simple pendulum with oscillations is given as: \[ (2 \pi)(\sqrt{\frac{L}{g}})=T \] Thus, the total differential $d T$ of $\mathrm{T}$ is given by \[ \begin{aligned} &\frac{\pi}{\sqrt{L g}} d L-\frac{\pi \sqrt{L}}{g \sqrt{g}} d g =d T \\ &-\frac{2 \pi \sqrt{L}}{2 g \sqrt{g}} d g+\frac{2 \pi L}{2 L \sqrt{L g}} d L =d T \\ d T &=\frac{T}{2 L} d L-\frac{T}{2 g} d g \\ \frac{d T}{T} &=\frac{d L}{2 L}-\frac{d g}{2 g} \end{aligned} \] , \[ \left|\frac{\Delta L}{L}\right| \leq 0.005 \] \[ \left|\frac{\Delta g}{g}\right| \leq 0.001 \] \[ \begin{aligned} \frac{\Delta T}{T_{0}} \approx & \frac{d T}{T}=\left|\frac{1}{2} \frac{\Delta L}{\Delta L}-\frac{1}{2} \frac{\Delta g}{g}\right| \\ & \frac{0.001}{2}+\frac{0.005}{2}=\frac{\Delta T}{T_{0}} \\ &0.003= \frac{\Delta T}{T_{0}} \end{aligned} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.