Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.4 Differentiability, Differentials, And Local Linearity - Exercises Set 13.4 - Page 948: 48

Answer

$\begin{aligned} f_{x}(0,-1,-2) &=1 \\ f_{y}(0,-1,-2) &=2 \\ f_{z}(0,-1,-2) &=3 \\ f(0,-1,-2) &=-4 \end{aligned}$

Work Step by Step

Given that $f(x, y)$ is differentiable at (0,-1,2) and partial derivatives exist, we use the Local Linear Approximation Theorem: $f\left(x_{0}, y_{0}, z_{0}\right)+f_{f}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+f_{f}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=L(x, y, z)$ So: $\Delta x=-x_{0}+x, \Delta y=-y_{0}+y$ , $\Delta z=-z_{0}+z$, $x_{0}=0, y_{0}=-1, and\ z_{0}=-2$ Thus: $x+2 y+3 y+4=f(0,-1,-2)+f_{x}(0,-1,-2)(x-0)+f_{y}(0,-1,-2)(y-(-1))$ $+f_{z}(0,-1,-2)(z-(-2))$ $1=f_{x}(0,-1,-2)$ $2=f_{y}(0,-1,-2)$ $3=f_{z}(0,-1,-2)$ Solving for $f(0,-1,-2)$ $f(0,-1,-2)=4-(0) f_{2}(0,-1,-2)-(1) \int_{y}(0,-1,-2)-(2) 5_{z}(0,-1,-2)$ $4-(1) 2-(2)(3)=f(0,-1,-2)$ $-4=f(0,-1,-2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.