Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.4 Differentiability, Differentials, And Local Linearity - Exercises Set 13.4 - Page 948: 34

Answer

\begin{array}{} a & L(x, y)=1+0.5(x-1)+0.3\left(x_{0}, y_{0}\right)(y-1) \\ b & \text { Magnitude of approximation error with the distance b/w } \mathrm{P} \text { and } \mathrm{Q}=0.01073 \end{array}

Work Step by Step

\[ f(x, y)=x^{0.5} y^{0.3} \quad P \equiv(1,1), Q \equiv(1.05,0.97) \] The linear approximation theorem is \[ L(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \] Now obtaining $\left.f_{(} x\right)$ and $f_{y}$ \[ \begin{aligned} &\frac{\partial f}{\partial x} =f_{x} \\ &\frac{\partial}{\partial x}\left(x^{0.5} y^{0.3}\right)=f_{x} \\ &y^{0.3} \frac{\partial}{\partial x}\left(x^{0.5}\right) =f_{x}\\ &0.5 x^{-0.5} y^{0.3}=f_{x} \\ &0.5 x^{-0.5} y^{0.3}=0.5=f_{x}(1,1) \end{aligned} \] Similarly $f_{y}$ \[ \begin{aligned} &\frac{\partial f}{\partial y}=f_{y} \\ &\frac{\partial}{\partial y}\left(x^{0.5} y^{0.3}\right) =f_{v}\\ &x^{0.5} \frac{\partial}{\partial y}\left(y^{0.3}\right)=f_{y} \\ &0.3 x^{0.5} y^{-0.7}=0.3=f_{y}(1,1) \end{aligned} \] $\because f(1,1)=1$, so substituting values of $f(1,1), f_{x}, f_{y}$ in the equation \[ L(x, y)=1+0.5(x-1)+0.3(y-1) \] b) Here, $\Delta x=0.05$ and $\Delta y=-0.03$: \[ \begin{aligned} \text { Distance }=&|P Q|=\sqrt{(x+\Delta x-x)^{2}+(y+\Delta y-y)^{2}} \\ &|P Q|=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} \\ &|P Q|=\sqrt{(0.05)^{2}+(-0.03)^{2}} \\ &|P Q|=0.05831 \end{aligned} \] Obtaining the approximated value at Point $\mathrm{Q}$ \[ \begin{array}{l} L(1.05,0.97)=1+0.5(1.05-1)+0.3(0.97-1) \\ L(1.05,0.97)=1+0.5(1.05-1)+0.3(0.97-1) \\ L(1.05,0.97)=1.016 \end{array} \] Error is defined by $\mathrm{E}$ \[ E=|L(1.05,0.97)-f(1.05,0.97)| \] \[ E=1.016-1.01537=0.0006257 \] The change in error with respect to distance between $\mathrm{P}$ and $\mathrm{Q}$ is \[ \begin{aligned} \frac{E}{|P Q|} &=\frac{0.0006257}{0.05831} \\ \frac{E}{|P Q|} &=0.01073 \end{aligned} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.