Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.4 Differentiability, Differentials, And Local Linearity - Exercises Set 13.4 - Page 948: 52

Answer

\[ P \equiv(1,-1,-1) \]

Work Step by Step

We are given a function of $f(x, y, z)$ of three variables and the local approximation function $L(x, y)$ \[ \begin{aligned} &-2+x-y-z =L(x, y, z) \\ x y z=f(x, y, z) & \end{aligned} \] We know that the local approximation function $L(x, y)$ is \[ f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=L(x, y, z) \] We obtain partial derivatives of the function \[ \begin{aligned} f_{x}(x, y, z) &=\frac{\partial}{\partial x}(x y z) \\ f_{x}\left(x_{0}, y_{0}, z_{0}\right) &=y_{0} z_{0} \\ f_{y}(x, y, z) &=\frac{\partial}{\partial y}(x y z) \\ f_{y}\left(x_{0}, y_{0}, z_{0}\right) &=x_{0} z_{0} \\ f_{z}(x, y, z) &=\frac{\partial}{\partial z}(x y z) \\ f_{z}\left(x_{0}, y_{0}, z_{0}\right) &=x_{0} y_{0} \end{aligned} \] Substituting these values in $L(x, y, z)$ \[ \begin{array}{rl} x_{0} y_{0} z_{0}+y_{0} z_{0}\left(x-x_{0}\right)+x_{0} z_{0}\left(y-y_{0}\right)+x_{0} y_{0}\left(z-z_{0}\right)=-2+x-y-z& \\ x\left(y_{0} z_{0}\right)+y\left(x_{0} z_{0}\right)+z\left(x_{0} y_{0}\right)-2 x_{0} y_{0} z_{0}=x-y-z-2 & 2 \end{array} \] By comparing coefficients, we get \[ \begin{aligned} x_{0} y_{0}=-1, y_{0} z_{0}=1, x_{0} z_{0}=-1 & \text { and } x_{0} y_{0} z_{0}=1 \\ \Rightarrow y_{0}=-1, z_{0}=-1, x_{0}=1 \end{aligned} \] $P=(1,-1,-1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.