Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.4 Differentiability, Differentials, And Local Linearity - Exercises Set 13.4 - Page 948: 47

Answer

\[ \begin{aligned} 1=f_{x}(3,2,1) & \\ -1=f_{y}(3,2,1) & \\ 2=f_{z}(3,2,1) & \\ 1=f(3,2,1) & \end{aligned} \]

Work Step by Step

Given that $f(x, y)$ is differentiable at (3,2,1) and partial derivatives exist, we use the Local Linear Approximation Theorem: $\left.\left.L(x, y, z)=f\left(x_{0}, y_{0}, z_{0}\right)+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\right)\left(x-x_{0}\right)+\int_{y}\left(x_{0}, y_{0}, z_{0}\right)\right)\left(y-y_{0}\right)+\int_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)$ $\Delta x=-x_{0}+x, \Delta y=-y_{0}+y$, $\Delta z=-z_{0}+z$, $3=x_{0}, 2=y_{0}, and \ 1=z_{0}$ Thus: $x-y+2 z-2=f(3,2,1)+f_{x}(3,2,1)(-3+x)+f_{y}(3,2,1)(-2+y)+f_{z}(3,2,1)(-1+z)$ $f_{x}(3,2,1)=1$ $f_{y}(3.2 .1)=-1$ $f_{z}(3,2,1)=2$ Therefore, we have $-2+(3) f_{\{}(3,2,1)+(2) f_{y}(3,2,1)+(1) z_{t}(3,2,1)=f(3,2,1)$ $-2+(3)(1)+(2)(-1)+(1)(2)=f(3,2,1)$ $1=f(3,2,1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.