Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.4 Differentiability, Differentials, And Local Linearity - Exercises Set 13.4 - Page 948: 49

Answer

$$P \equiv(-1,1)$$

Work Step by Step

We are given a function $f(x, y)$ of two variables, and the estimated value of the function by the local approximation theorem at point $P \equiv\left(x_{0}, y_{0}\right)$: \[ \begin{array}{l} L(x, y)=-2+2 y-2 x\\ f(x, y)=y^{2}+x^{2} \end{array} \] We know that \[ f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=L(x, y) \] Therefore, obtaining partial derivatives to approximate the function by the Local Approximation Theorem: \[ \begin{aligned} f_{x}(x, y) &=\frac{\partial}{\partial x}\left(x^{2}+y^{2}\right) \\ 2 x=f_{x}(x, y) &\\ f_{x}\left(x_{0}, y_{0}\right) &=2 x_{0} \\ f_{y}(x, y) &=\frac{\partial}{\partial y}\left(x^{2}+y^{2}\right) \\ 2 y=f_{y}(x, y) & \\ f_{y}\left(x_{0}, y_{0}\right) &=2 y_{0} \end{aligned} \] Substituting these values in $L(x, y)$ \[ \begin{array}{l} 2 y-2 x-2=x_{0}^{2}+y_{0}^{2}+2 x_{0}\left(x-x_{0}\right)+2 y_{0}\left(y-y_{0}\right) \\ 2 y-2 x-2=-x_{0}^{2}-y_{0}^{2}+2 x_{0} x+2 y_{0} y \end{array} \] Comparing the coefficients of equation (1), we get \[ \begin{array}{r} 2 x_{0}=-2 \\ 2=2 y_{0} \\ -x_{0}^{2}-y_{0}^{2}=-2 \\ x_{0}=-1 \text { and } y_{0}=1 \end{array} \] $P \equiv(-1,1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.