Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.4 Differentiability, Differentials, And Local Linearity - Exercises Set 13.4 - Page 948: 46

Answer

\[ \begin{array}{c} 1=f_{x}(0,-1) \end{array} \]

Work Step by Step

Given that $f(x, y)$ is differentiable at (0,-1) and partial derivatives exist, we use the Local Linear Approximation Theorem: \[ f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=L(x, y) \] So: $ \Delta x= -x_{0}+x$, $\Delta y=-y_{0}+y$, $x_{0}=0, y_{0}=-1,x=0.1, and \ y=-1.1 $ Thus: \[ \begin{array}{c} f_{y}(0,-1)=-2 \quad \& \quad f(0,-1)=3 \\ L(x, y)=L(0.1,-1.1)=3.3 \\ L(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\ \Rightarrow 3.3=3+(-2)(-0.1)+f_{x}(0,-1)(0.1-0) \\ \frac{0.1}{0.1} =f_{x}(0,-1) \\ 1=f_{x}(0,-1) \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.