Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Appendix B - Trigonometry Review - Exercise Set B - Page A25: 54

Answer

$${\text{We have proved that }}LHS = RHS$$

Work Step by Step

$$\eqalign{ & \sin 3\theta + \sin \theta = 2\sin 2\theta \cos \theta \cr & \cr & LHS = \sin 3\theta + \sin \theta {\text{ and }}RHS = 2\sin 2\theta \cos \theta \cr & \cr & LHS = \sin \left( {2\theta + \theta } \right) + \sin \theta \cr & {\text{Use the identity }}\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B \cr & LHS = \sin 2\theta \cos \theta + \cos 2\theta \sin \theta + \sin \theta \cr & \cr & {\text{Use the identity cos2}}\theta = 2{\cos ^2}\theta - 1 \cr & \cr & LHS = \sin 2\theta \cos \theta + \left( {2{{\cos }^2}\theta - 1} \right)\sin \theta + \sin \theta \cr & LHS = \sin 2\theta \cos \theta + 2\sin \theta {\cos ^2}\theta \cr & LHS = \sin 2\theta \cos \theta + 2\sin \theta \cos \theta \cos \theta \cr & LHS = \sin 2\theta \cos \theta + \sin 2\theta \cos \theta \cr & LHS = 2\sin 2\theta \cos \theta \cr & \cr & {\text{We have proved that }}LHS = RHS \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.