Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Appendix B - Trigonometry Review - Exercise Set B - Page A25: 50

Answer

$${\text{We have proved that }}LHS = RHS$$

Work Step by Step

$$\eqalign{ & 2\csc 2\theta = \sec \theta \csc \theta \cr & \cr & LHS = 2\csc 2\theta {\text{ and }}RHS = \sec \theta \csc \theta \cr & \cr & {\text{Use the identity }}\csc \alpha = \frac{1}{{\sin \alpha }} \cr & LHS = 2\left( {\frac{1}{{\sin 2\theta }}} \right) \cr & {\text{Use the identity }}\sin 2\theta = 2\sin \theta \cos \theta \cr & LHS = 2\left( {\frac{1}{{2\sin \theta \cos \theta }}} \right) \cr & LHS = \frac{1}{{\sin \theta \cos \theta }} \cr & LHS = \left( {\frac{1}{{\sin \theta }}} \right)\left( {\frac{1}{{\cos \theta }}} \right) \cr & LHS = \csc \theta \sec \theta \cr & \cr & {\text{We have proved that }}LHS = RHS \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.