Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Appendix B - Trigonometry Review - Exercise Set B - Page A25: 48

Answer

$${\text{We have proved that }}LHS = RHS$$

Work Step by Step

$$\eqalign{ & \frac{{\cos \theta \sec \theta }}{{1 + {{\tan }^2}\theta }} = {\cos ^2}\theta \cr & \cr & LHS = \frac{{\cos \theta \sec \theta }}{{1 + {{\tan }^2}\theta }}{\text{ and }}RHS = {\cos ^2}\theta \cr & \cr & {\text{Use the identities sec}}\theta = \frac{1}{{\cos \theta }}{\text{ and tan}}\theta = \frac{{\sin \theta }}{{\cos \theta }} \cr & LHS = \frac{{\cos \theta \left( {\frac{1}{{\cos \theta }}} \right)}}{{1 + \left( {\frac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}} \right)}} \cr & LHS = \frac{1}{{\frac{{{{\cos }^2}\theta + {{\sin }^2}\theta }}{{{{\cos }^2}\theta }}}} \cr & LHS = \frac{{{{\cos }^2}\theta }}{{{{\cos }^2}\theta + {{\sin }^2}\theta }} = \frac{{{{\cos }^2}\theta }}{1} \cr & LHS = {\cos ^2}\theta \cr & \cr & {\text{We have proved that }}LHS = RHS \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.