Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Appendix B - Trigonometry Review - Exercise Set B - Page A25: 53

Answer

$${\text{We have proved that }}LHS = RHS$$

Work Step by Step

$$\eqalign{ & \frac{{\sin \theta + \cos 2\theta - 1}}{{\cos \theta - \sin 2\theta }} = \tan \theta \cr & \cr & LHS = \frac{{\sin \theta + \cos 2\theta - 1}}{{\cos \theta - \sin 2\theta }}{\text{ and }}RHS = \tan \theta \cr & \cr & {\text{Use the identities}} \cr & {\text{ sin2}}\theta = 2\sin \theta \cos \theta {\text{ and cos2}}\theta = {\cos ^2}\theta - {\sin ^2}\theta \cr & \cr & LHS = \frac{{\sin \theta + {{\cos }^2}\theta - {{\sin }^2}\theta - 1}}{{\cos \theta - 2\sin \theta \cos \theta }} \cr & LHS = \frac{{\sin \theta - {{\sin }^2}\theta + \left( {{{\cos }^2}\theta - 1} \right)}}{{\cos \theta - 2\sin \theta \cos \theta }} \cr & LHS = \frac{{\sin \theta - {{\sin }^2}\theta - {{\sin }^2}\theta }}{{\cos \theta - 2\sin \theta \cos \theta }} \cr & LHS = \frac{{\sin \theta - 2{{\sin }^2}\theta }}{{\cos \theta - 2\sin \theta \cos \theta }} \cr & LHS = \frac{{\sin \theta \left( {1 - 2\sin \theta } \right)}}{{\cos \theta \left( {1 - 2\sin \theta } \right)}} \cr & LHS = \tan \theta \cr & \cr & {\text{We have proved that }}LHS = RHS \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.