Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Appendix B - Trigonometry Review - Exercise Set B - Page A25: 49

Answer

$${\text{We have proved that }}LHS = RHS$$

Work Step by Step

$$\eqalign{ & \frac{{\cos \theta \tan \theta + \sin \theta }}{{\tan \theta }} = 2\cos \theta \cr & \cr & LHS = \frac{{\cos \theta \tan \theta + \sin \theta }}{{\tan \theta }}{\text{ and }}RHS = 2\cos \theta \cr & \cr & {\text{Use the identity tan}}\theta = \frac{{\sin \theta }}{{\cos \theta }} \cr & LHS = \frac{{\cos \theta \left( {\frac{{\sin \theta }}{{\cos \theta }}} \right) + \sin \theta }}{{\frac{{\sin \theta }}{{\cos \theta }}}} \cr & LHS = \frac{{\sin \theta + \sin \theta }}{{\frac{{\sin \theta }}{{\cos \theta }}}} \cr & LHS = \frac{{\cos \theta \left( {\sin \theta + \sin \theta } \right)}}{{\sin \theta }} \cr & LHS = \frac{{2\cos \theta \sin \theta }}{{\sin \theta }} \cr & LHS = 2\cos \theta \cr & \cr & {\text{We have proved that }}LHS = RHS \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.