Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Appendix B - Trigonometry Review - Exercise Set B - Page A25: 51

Answer

$${\text{We have proved that }}LHS = RHS$$

Work Step by Step

$$\eqalign{ & \tan \theta + \cot \theta = 2\csc 2\theta \cr & \cr & LHS = \tan \theta + \cot \theta {\text{ and }}RHS = 2\csc 2\theta \cr & \cr & {\text{Use the identity }}\tan \theta = \frac{{\sin \theta }}{{\cos \theta }}{\text{ and cot}}\theta = \frac{{\cos \theta }}{{\sin \theta }} \cr & LHS = \tan \theta + \cot \theta \cr & LHS = \frac{{\sin \theta }}{{\cos \theta }} + \frac{{\cos \theta }}{{\sin \theta }} \cr & LHS = \frac{{{{\sin }^2}\theta + {{\cos }^2}\theta }}{{\cos \theta \sin \theta }} \cr & LHS = \frac{1}{{\cos \theta \sin \theta }} \cr & LHS = \frac{2}{{2\cos \theta \sin \theta }} \cr & LHS = \frac{2}{{\sin 2\theta }} \cr & LHS = 2\left( {\frac{1}{{\sin 2\theta }}} \right) \cr & LHS = 2\csc 2\theta \cr & \cr & {\text{We have proved that }}LHS = RHS \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.