Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Appendix B - Trigonometry Review - Exercise Set B - Page A25: 47

Answer

Ans. $sin3θ=3sinθ-4sin^3θ$ $cos3θ=4cos^3θ-3cosθ$

Work Step by Step

Sol:- find out the value of sin3θ and cos3θ a. $sin3θ=sin(2θ+θ)$ =$sin2θcosθ+cos2θsinθ$ We know that $Sin2θ=2sinθcosθ$ , $cos2θ=cos^2θ-sin^2θ$ =$2sinθcosθ+(cos^2θ-sin^2θ)sinθ$ =$3sinθcos^2θ-sin^3θ$ Putting $cos^2θ=1-sin^2θ$ =$3sinθ(1-sin^2θ)-sin^3θ$ =$3sinθ-4sin^3θ$ b. $Cos3θ=cos(2θ+θ)$ =$cos2θcosθ-sin2θsinθ$ We know that $Sin2θ=2sinθcosθ$, $cos2θ=cos^2θ-sin^2θ$ =$(cos^2θ-sin^2θ) cosθ-2sinθcosθsinθ$ =$cos^3θ-3sin^2θcosθ$ putting the value of$sin^2θ=1-cos^2θ$ =$4cos^3θ-3cosθ$ Ans.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.