Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.2 - Trigonometric Integrals - 7.2 Exercises - Page 499: 66

Answer

$\frac{\pi }{4} + \ln \sqrt 2 - 1$

Work Step by Step

$$\eqalign{ & {\text{Let the curves:}} \cr & y = \tan x{\text{ and }}y = {\tan ^2}x,{\text{ on the interval }}\left[ {0,\frac{\pi }{4}} \right] \cr & \tan x \geqslant {\tan ^2}x{\text{ on the interval }}\left[ {0,\frac{\pi }{4}} \right] \cr & {\text{Then}}{\text{, the area is given by}} \cr & A = \int_0^{\pi /4} {\left( {\tan x - {{\tan }^2}x} \right)} dx \cr & {\text{Use the pythagorean identity }}{\sec ^2}\theta - 1 = {\tan ^2}\theta \cr & A = \int_0^{\pi /4} {\left( {\tan x + 1 - {{\sec }^2}x} \right)} dx \cr & {\text{Integrating }} \cr & A = \left[ { - \ln \left| {\cos x} \right| + x - \tan x} \right]_0^{\pi /4} \cr & {\text{Evaluating}} \cr & A = \left[ { - \ln \left| {\cos \frac{\pi }{4}} \right| + \frac{\pi }{4} - \tan \left( {\frac{\pi }{4}} \right)} \right] - \left[ { - \ln \left| {\cos 0} \right| + 0 - \tan \left( 0 \right)} \right] \cr & {\text{Simplifying}} \cr & A = \left[ { - \ln \left| {\frac{{\sqrt 2 }}{2}} \right| + \frac{\pi }{4} - 1} \right] - \left[ 0 \right] \cr & A = \frac{\pi }{4} + \ln \sqrt 2 - 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.