Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.2 - Trigonometric Integrals - 7.2 Exercises - Page 499: 35

Answer

$- \frac{1}{4} +\frac{1}{2} \ln 2$

Work Step by Step

$$\eqalign{ & \text{Let }I=\int_0^{\pi /4} {\frac{{{{\sin }^3}x}}{{\cos x}}} dx \cr & {\text{Split }}{\sin ^3}x{\text{ as }}{\sin ^2}x\sin x \cr & I = \int_0^{\pi /4} {\frac{{{{\sin }^2}x\sin x}}{{\cos x}}} dx \cr & {\text{Rewrite }}{\sin ^2}x{\text{ using }}{\sin ^2}x + {\cos ^2}x = 1 \cr & I= \int_0^{\pi /4} {\frac{{\left( {1 - {{\cos }^2}x} \right)}}{{\cos x}}\left( {\sin x} \right)} dx \cr & {\text{Integrate by the substitution method}} \cr & {\text{Let }}u = \cos x,{\text{ }}du = - \sin xdx \cr & {\text{The new limits of integration are:}} \cr & x = \frac{\pi }{4} \to u = \cos \left( {\frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2} \cr & x = \frac{\pi }{4} \to u = \cos \left( 0 \right) = 1 \cr & {\text{Substituting}} \cr & I=\int_0^{\pi /4} {\frac{{\left( {1 - {{\cos }^2}x} \right)}}{{\cos x}}\left( {\sin x} \right)} dx = \int_1^{\sqrt 2 /2} {\frac{{\left( {1 - {u^2}} \right)}}{u}\left( { - 1} \right)du} \cr & = \int_1^{\sqrt 2 /2} {\frac{{{u^2} - 1}}{u}du} \cr & = \int_1^{\sqrt 2 /2} {\left( {u - \frac{1}{u}} \right)du} \cr & {\text{Integrating}} \cr & I = \left[ {\frac{{{u^2}}}{2} - \ln \left| u \right|} \right]_1^{\sqrt 2 /2} \cr & = \left[ {\frac{{{{\left( {\sqrt 2 /2} \right)}^2}}}{2} - \ln \left( {\frac{{\sqrt 2 }}{2}} \right)} \right] - \left[ {\frac{{{{\left( 1 \right)}^2}}}{2} - \ln \left( 1 \right)} \right] \cr & = \frac{1}{4} - \ln \left( {\frac{{\sqrt 2 }}{2}} \right) - \frac{1}{2} \cr & = - \frac{1}{4} - \ln \left( {\frac{{\sqrt 2 }}{2}} \right) \cr & = - \frac{1}{4} - \ln \left( 2^{-1/2} \right) \cr & = - \frac{1}{4} +\frac{1}{2} \ln 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.