Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.2 - Trigonometric Integrals - 7.2 Exercises - Page 499: 54

Answer

$ - x\cos x + \frac{1}{3}x{\cos ^3}x + \frac{2}{3}\sin x + \frac{{{{\sin }^3}x}}{9} + C$

Work Step by Step

$$\eqalign{ & \int {x{{\sin }^3}x} dx \cr & {\text{Split the integrand}}{\text{, recall that }}{a^m}{a^n} = {a^{m + n}} \cr & = \int {x{{\sin }^2}x\sin x} dx \cr & {\text{Use the pythagorean identity }}{\sin ^2}\theta + {\cos ^2}\theta = 1 \cr & = \int {x\left( {1 - {{\cos }^2}x} \right)\sin x} dx \cr & {\text{Integrate by parts}} \cr & {\text{Let }}u = x,{\text{ }}dv = dx \cr & dv = \left( {1 - {{\cos }^2}x} \right)\sin x,{\text{ }}v = - \cos x + \frac{1}{3}{\cos ^3}x \cr & \int {udv} = uv - \int {vdu} \cr & = x\left( { - \cos x + \frac{1}{3}{{\cos }^3}x} \right) - \int {\left( { - \cos x + \frac{1}{3}{{\cos }^3}x} \right)dx} \cr & = - x\cos x + \frac{1}{3}x{\cos ^3}x + \int {\cos x} dx - \frac{1}{3}\int {{{\cos }^3}x} dx \cr & = - x\cos x + \frac{1}{3}x{\cos ^3}x + \int {\cos x} dx - \frac{1}{3}\int {\left( {1 - {{\sin }^2}x} \right)\cos x} dx \cr & {\text{Integrating}} \cr & = - x\cos x + \frac{1}{3}x{\cos ^3}x + \sin x - \frac{1}{3}\left( {\sin x - \frac{{{{\sin }^3}x}}{3}} \right) + C \cr & {\text{Simplifying}} \cr & = - x\cos x + \frac{1}{3}x{\cos ^3}x + \sin x - \frac{1}{3}\sin x + \frac{{{{\sin }^3}x}}{9} + C \cr & = - x\cos x + \frac{1}{3}x{\cos ^3}x + \frac{2}{3}\sin x + \frac{{{{\sin }^3}x}}{9} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.