Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.2 - Trigonometric Integrals - 7.2 Exercises - Page 499: 48

Answer

$\sin \left( {\tan y} \right) - \frac{1}{3}{\sin ^3}\left( {\tan y} \right) + C$

Work Step by Step

$$\eqalign{ & \int {{{\sec }^2}y{{\cos }^3}\left( {\tan y} \right)} dy \cr & {\text{Split }}{\cos ^3}\left( {\tan y} \right){\text{ as }}{\cos ^2}\left( {\tan y} \right)\cos \left( {\tan y} \right) \cr & = \int {{{\sec }^2}y{{\cos }^2}\left( {\tan y} \right)\cos \left( {\tan y} \right)} dy \cr & {\text{Rewrite }}{\sin ^2}x{\text{ using }}{\sin ^2}x + {\cos ^2}x = 1 \cr & = \int {{{\sec }^2}y\left[ {1 - {{\sin }^2}\left( {\tan y} \right)} \right]\cos \left( {\tan y} \right)} dy \cr & = \int {\left[ {1 - {{\sin }^2}\left( {\tan y} \right)} \right]\cos \left( {\tan y} \right){{\sec }^2}y} dy \cr & {\text{Integrate by the substitution method}} \cr & {\text{Let }}u = \sin \left( {\tan y} \right),{\text{ }}du = \cos \left( {\tan y} \right){\sec ^2}ydy \cr & {\text{Substituting}} \cr & = \int {\left( {1 - {u^2}} \right)} du \cr & {\text{Use the power rule }}\int {{u^n}} du = \frac{1}{{n + 1}}{u^{n + 1}} + C \cr & = u - \frac{1}{3}{u^3} + C \cr & {\text{Write in terms of }}t,{\text{ substitute }}\sin \left( {\tan y} \right){\text{ for }}u \cr & = \sin \left( {\tan y} \right) - \frac{1}{3}{\sin ^3}\left( {\tan y} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.