Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.2 - Trigonometric Integrals - 7.2 Exercises - Page 499: 37

Answer

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}cot^{2}x\,dx=\sqrt{3}-\frac{\pi}{3}$$

Work Step by Step

$$cot^{2}x=csc^{2}x-1$$ $$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}cot^{2}x\,dx=\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}(csc^{2}x-1)dx$$ $$=\left [ -cotx-x \right ]_{\pi/6}^{\pi/2}$$ $$=(0-\frac{\pi}{2})-(-\sqrt{3}-\frac{\pi}{6})$$ $$=\sqrt{3}-\frac{\pi}{3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.