Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.2 - Trigonometric Integrals - 7.2 Exercises - Page 499: 47

Answer

$\frac{1}{4}\sin \left( {\frac{2}{t}} \right) - \frac{1}{{2t}} + C$

Work Step by Step

$$\eqalign{ & \int {\frac{{{{\sin }^2}\left( {1/t} \right)}}{{{t^2}}}} dt \cr & {\text{Use the identity si}}{{\text{n}}^2}\theta = \frac{{1 - \cos 2\theta }}{2},{\text{ Let }}\theta = \frac{1}{t} \cr & \int {\frac{{{{\sin }^2}\left( {1/t} \right)}}{{{t^2}}}} dt = \int {\frac{{1 - \cos 2\left( {1/t} \right)}}{2}\left( {\frac{1}{{{t^2}}}} \right)} dt \cr & {\text{Rewrite the integrand}} \cr & = \frac{1}{2}\int {\left( {1 - \cos \left( {\frac{2}{t}} \right)} \right)\left( {\frac{1}{{{t^2}}}} \right)} dt \cr & {\text{Integrate by the substitution method}} \cr & {\text{Let }}u = \frac{2}{t},{\text{ }}du = - \frac{2}{{{t^2}}}dt,{\text{ }} - \frac{1}{2}du = \frac{1}{{{t^2}}}dt \cr & {\text{Substituting}} \cr & = \frac{1}{2}\int {\left( {1 - \cos u} \right)\left( { - \frac{1}{2}} \right)} du \cr & = \frac{1}{4}\int {\left( {\cos u - 1} \right)} du \cr & {\text{Integrating}} \cr & = \frac{1}{4}\left( {\sin u - u} \right) + C \cr & {\text{Write in terms of }}t,{\text{ substitute }}\frac{2}{t}{\text{ for }}u \cr & = \frac{1}{4}\left( {\sin \left( {\frac{2}{t}} \right) - \frac{2}{t}} \right) + C \cr & = \frac{1}{4}\sin \left( {\frac{2}{t}} \right) - \frac{1}{{2t}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.