Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.2 - Trigonometric Integrals - 7.2 Exercises - Page 499: 24

Answer

$\frac{1}{3}{\tan ^3}x + C$

Work Step by Step

$$\eqalign{ & \text{Let } I = \int {\left( {{{\tan }^2}x + {{\tan }^4}x} \right)} dx \cr & {\text{Factor the integrand}} \cr & I= \int {\left( {1 + {{\tan }^2}x} \right){{\tan }^2}x} dx \cr & {\text{Rewrite the integrand }}{\tan ^2}x{\text{ using }}{\tan ^2}\theta = {\sec ^2}\theta - 1 \cr & I = \int {\left( {1 + {{\sec }^2}x - 1} \right){{\tan }^2}x} dx \cr & = \int {{{\sec }^2}x{{\tan }^2}x} dx \cr & = \int {{{\tan }^2}x{{\sec }^2}x} dx \cr & {\text{Let }}u = \tan x,{\text{ }}du = {\sec ^2}xdx \cr & {\text{Substituting}} \cr & I = \int {{u^2}} du \cr & {\text{Use the power rule }}\int {{u^n}} du = \frac{1}{{n + 1}}{u^{n + 1}} + C \cr & I = \frac{1}{3}{u^3} + C \cr & {\text{Write in terms of }}x,{\text{ substitute }}\tan x{\text{ for }}u \cr & I = \frac{1}{3}{\tan ^3}x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.