Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.2 - Trigonometric Integrals - 7.2 Exercises - Page 499: 21

Answer

$\frac{{{{\sec }^3}x}}{3} + C$

Work Step by Step

$$\eqalign{ & \text{Let }I= \int {\tan x} {\sec ^3}xdx \cr & {\text{Split }}{\sec ^3}x{\text{ as }}{\sec ^2}x\sec x \cr & I = \int {\tan x} {\sec ^2}x\sec xdx \cr & = \int {{{\sec }^2}x\sec x} \tan xdx \cr & {\text{Let }}u = \sec x,{\text{ }}du = \sec x\tan xdx \cr & {\text{Substituting}} \cr & I=\int {{{\sec }^2}x\left( {\sec x\tan x} \right)} dx = \int {{u^2}du} \cr & {\text{Use the power rule }}\int {{u^n}} du = \frac{{{u^{n + 1}}}}{{n + 1}} + C \cr &I = \int {{u^2}du} = \frac{{{u^3}}}{3} + C \cr & {\text{Write in terms of }}x,{\text{ substitute }}\sec x{\text{ for }}u \cr & I = \frac{{{{\sec }^3}x}}{3} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.