#### Answer

$4\sqrt{2x}$

#### Work Step by Step

Simplify the radicals that can still be simplified by factoring the radicand so that one of the factors is a perfect square:
$=2\sqrt{25(2x)}-2\sqrt{9(2x)}
\\=2\sqrt{5^2(2x)} -2\sqrt{3^2(2x)}
\\=2\cdot 5\sqrt{2x} -2\cdot 3\sqrt{2x}
\\=10\sqrt{2x}-6\sqrt{2x}$
RECALL:
For any real numbers $, a, b,$ and $c$,
$ac+bc=(a+b)c$
Use the rule above to combine like terms:
$=(10-6)\sqrt{2x}
\\=4\sqrt{2x}$