Answer
$\frac{6x^2-x-35}{2x-5}= 3x+7$
Work Step by Step
Given $$\frac{6x^2-x-35}{2x-5}.$$ Amy did not properly distribute the negative through the binomial on the second step. The binomial, $-6x^2-15x$ should have been $-6x^2+15x$. Here is the correction.
$$
\begin{array}{r}
3x+7\phantom{)} \\
2x-5{\overline{\smash{\big)}\,6x^2-x-35\phantom{)}}}\\
\underline{-~\phantom{(}(6x^2-15x)\phantom{-b)}}\\
0+14x-35\phantom{)}\\
\underline{-~\phantom{()}(14x-35)}\\
0\phantom{)}
\end{array}
$$ The solution is:
\begin{equation}
\begin{aligned}
\frac{6x^2-x-35}{2x-5}&= 3x+7.
\end{aligned}
\end{equation}