Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Review Exercises - Page 574: 6

Answer

$\left\{\dfrac{1}{2},1\right\}$

Work Step by Step

In the form $x^2+bx=c,$ the given equation, $ 2x^2-3x=-1 ,$ is equivalent to \begin{align*} \dfrac{2x^2-3x}{2}&=-\dfrac{1}{2} \\\\ x^2-\dfrac{3}{2}x&=-\dfrac{1}{2} .\end{align*} Completing the square of the left-hand expression equation above is equivalent to \begin{align*} x^2-\dfrac{3}{2}x+\left(\dfrac{-3/2}{2}\right)^2&=-\dfrac{1}{2}+\left(\dfrac{-3/2}{2}\right)^2 &(\text{add }\left(\dfrac{b}{2}\right)^2) \\\\ x^2-\dfrac{3}{2}x+\dfrac{9}{16}&=-\dfrac{1}{2}+\dfrac{9}{16} \\\\ \left(x-\dfrac{3}{4}\right)^2&=-\dfrac{8}{16}+\dfrac{9}{16} \\\\ \left(x-\dfrac{3}{4}\right)^2&=\dfrac{1}{16} .\end{align*} Taking the square root of both sides (Square Root Property), the equation above is equivalent to \begin{align*} x-\dfrac{3}{4}&=\pm\sqrt{\dfrac{1}{16}} \\\\ x-\dfrac{3}{4}&=\pm\sqrt{\left(\dfrac{1}{4}\right)^2} \\\\ x-\dfrac{3}{4}&=\pm\dfrac{1}{4} .\end{align*} Using the properties of equality, the equation above is equivalent to \begin{align*}\require{cancel} x&=\dfrac{3}{4}\pm\dfrac{1}{4} \end{align*}\begin{array}{c|c} x=\dfrac{3}{4}-\dfrac{1}{4} & x=\dfrac{3}{4}+\dfrac{1}{4} \\\\ x=\dfrac{2}{4} & x=\dfrac{4}{4} \\\\ x=\dfrac{1}{2} & x=1 .\end{array} Hence, the solution set of $ 2x^2-3x=-1 $ is $ \left\{\dfrac{1}{2},1\right\} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.