Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Review Exercises - Page 574: 14

Answer

$\left\{\dfrac{-7\pm\sqrt{37}}{2}\right\}$

Work Step by Step

In the form $ax^2+bx+c=0,$ the given equation, $ x(2x-7)=3x^2+3 ,$ is equivalent to \begin{align*} x(2x)+x(-7)&=3x^2+3 &(\text{use Distributive Property} \\ 2x^2-7x&=3x^2+3 \\ 0&=(3x^2-2x^2)+7x+3 \\ 0&=x^2+7x+3 \\ x^2+7x+3&=0 .\end{align*} The equation above has \begin{align*}a= 1 ,b= 7 ,\text{ and }c= 3 .\end{align*} Using $ x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} $ or the Quadratic Formula, then \begin{align*} x&=\dfrac{-7\pm\sqrt{7^2-4(1)(3)}}{2(1)} \\\\&= \dfrac{-7\pm\sqrt{49-12}}{2} \\\\&= \dfrac{-7\pm\sqrt{37}}{2} .\end{align*} Hence, the solution set of $ x(2x-7)=3x^2+3 $ is $ \left\{\dfrac{-7\pm\sqrt{37}}{2}\right\} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.