Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Review Exercises - Page 574: 11

Answer

$\left\{\dfrac{1\pm\sqrt{41}}{2}\right\}$

Work Step by Step

In the form $ax^2+bx+c=0,$ the given equation, $ (t+3)(t-4)=-2 ,$ is equivalent to \begin{align*} t(t)+t(-4)+3(t)+3(-4)&=-2 &(\text{use }(a+b)(c+d)=ac+ad+bc+bd) \\ t^2-4t+3t-12&=-2 \\ t^2+(-4t+3t)+(-12+2)&=0 \\ t^2-t-10&=0 .\end{align*} The equation above has \begin{align*}a= 1 ,b= -1 ,\text{ and }c= -10 .\end{align*} Using $ x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} $ or the Quadratic Formula, then \begin{align*} x&=\dfrac{-(-1)\pm\sqrt{(-1)^2-4(1)(-10)}}{2(1)} \\\\&= \dfrac{1\pm\sqrt{1+40}}{2} \\\\&= \dfrac{1\pm\sqrt{41}}{2} .\end{align*} Hence, the solution set of $ (t+3)(t-4)=-2 $ is $ \left\{\dfrac{1\pm\sqrt{41}}{2}\right\} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.