Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Review Exercises - Page 574: 21

Answer

$\left\{-4\right\}$

Work Step by Step

Squaring both sides, the given equation, $ -2r=\sqrt{\dfrac{48-20r}{2}} $, is equivalent to \begin{align*} (-2r)^2&=\left(\sqrt{\dfrac{48-20r}{2}}\right)^2 \\\\ 4r^2&=\dfrac{48-20r}{2} .\end{align*} Using properties of equality, the equation above is equivalent to \begin{align*}\require{cancel} 2(4r^2)&=\left(\dfrac{48-20r}{\cancel2}\right)\cancel2 \\\\ 8r^2&=48-20r \\ 8r^2+20r-48&=0 \\\\ \dfrac{8r^2+20r-48}{4}&=\dfrac{0}{4} \\\\ 2r^2+5r-12&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (r+4)(2r-3)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} r+4=0 & 2r-3=0 \\ r=-4 & 2r=3 \\ & r=\dfrac{3}{2} .\end{array} Since both sides of the given radical equation were squared, then checking of solutions is a must for possible existence of extraneous solutions. Checking the solutions by substituting in the original equation results to \begin{array}{l|r} \text{If }r=-4 & \text{If }r=\dfrac{3}{2}: \\\\ -2(-4)\overset{?}=\sqrt{\dfrac{48-20(-4)}{2}} & -2\left(\dfrac{3}{2}\right)\overset{?}=\sqrt{\dfrac{48-20\left(\dfrac{3}{2}\right)}{2}} \\\\ 8\overset{?}=\sqrt{\dfrac{48+80}{2}} & -3\overset{?}=\sqrt{\dfrac{48-30}{2}} \\\\ 8\overset{?}=\sqrt{\dfrac{128}{2}} & -3\ne\text{some nonnegative number.} \\\\ 8\overset{?}=\sqrt{64} & \\ 8\overset{\checkmark}=8 & \end{array} Since $r=\dfrac{3}{2}$ does not satisfy the original equation, then the only solution is $r=-4$. Hence, the solution set of the equation $ -2r=\sqrt{\dfrac{48-20r}{2}} $ is $ \left\{-4\right\} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.