Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Review Exercises - Page 574: 12

Answer

$\left\{-\dfrac{3}{4}\pm\dfrac{\sqrt{23}}{4}i\right\}$

Work Step by Step

The given equation, $ 2x^2+3x+4=0 ,$ has \begin{align*}a= 2 ,b= 3 ,\text{ and }c= 4 .\end{align*} Using $ x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} $ or the Quadratic Formula, then \begin{align*} x&=\dfrac{-3\pm\sqrt{3^2-4(2)(4)}}{2(2)} \\\\&= \dfrac{-3\pm\sqrt{9-32}}{4} \\\\&= \dfrac{-3\pm\sqrt{-23}}{4} .\end{align*} Using concepts of simplifying radicals, the equation above is equivalent to \begin{align*} x&=\dfrac{-3\pm\sqrt{23\cdot(-1)}}{4} \\\\&= \dfrac{-3\pm\sqrt{23}\cdot\sqrt{-1}}{4} \\\\&= \dfrac{-3\pm\sqrt{23}\cdot i}{4} &(\text{use }i=\sqrt{-1}) \\\\&= -\dfrac{3}{4}\pm\dfrac{\sqrt{23}}{4}i .\end{align*} Hence, the solution set of $ 2x^2+3x+4=0 $ is $ \left\{-\dfrac{3}{4}\pm\dfrac{\sqrt{23}}{4}i\right\} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.