Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Review Exercises - Page 574: 4

Answer

$\left\{\dfrac{2}{3}\pm\dfrac{5i}{3}\right\}$

Work Step by Step

Taking the square root of both sides (Square Root Property), the given equation, $ (3x-2)^2=-25 ,$ is equivalent to \begin{align*} 3x-2&=\pm\sqrt{-25} .\end{align*} Using concepts of simplifying radicals, the equation above is equivalent to \begin{align*} 3x-2&=\pm\sqrt{25\cdot(-1)} \\ 3x-2&=\pm\sqrt{25}\cdot\sqrt{-1} \\ 3x-2&=\pm5\cdot\sqrt{-1} \\ 3x-2&=\pm5i &(\text{use }i=\sqrt{-1}) .\end{align*} Using the properties of equality, the equation above is equivalent to \begin{align*}\require{cancel} 3x&=2\pm5i \\\\ \dfrac{\cancel3x}{\cancel3}&=\dfrac{2\pm5i}{3} \\\\ x&=\dfrac{2\pm5i}{3} \\\\ x&=\dfrac{2}{3}\pm\dfrac{5i}{3} .\end{align*} Hence, the solution set of $ (3x-2)^2=-25 $ is $ \left\{\dfrac{2}{3}\pm\dfrac{5i}{3}\right\} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.