#### Answer

$\frac{\sqrt x}{5}$

#### Work Step by Step

According to the quotient product of radicals, $\sqrt[n] \frac{a}{b}=\frac{\sqrt[n] a}{\sqrt[n] b}$ (where $\sqrt[n] a$ and $\sqrt[n] b$ are real numbers and $n$ is a natural number). That is, the nth root of a quotient is the quotient of the nth roots.
Therefore, $\sqrt \frac{x}{25}=\frac{\sqrt x}{\sqrt 25}=\frac{\sqrt x}{5}$.
$\sqrt 25=5$, because $5^{2}=25$