#### Answer

$\text{slope-intercept form: }
y=0.8x-6
\\\\
\text{standard form: }
4x-5y=30$

#### Work Step by Step

Using $y-y_1=m(x-x_1)$ or the point-slope form of linear equations, the equation of the line passing through $(
6,-1.2
)$ and with a slope of $m=
0.8
$ is
\begin{array}{l}\require{cancel}
y-(-1.2)=0.8(x-6)
\\\\
y+1.2=0.8(x-6)
.\end{array}
In the form $y=mx+b$, the equation above is equivalent to
\begin{array}{l}\require{cancel}
y+1.2=0.8x-4.8
\\\\
y=0.8x-4.8-1.2
\\\\
y=0.8x-6
.\end{array}
In the form $Ax+By=C$, the equation above is equivalent to
\begin{array}{l}\require{cancel}
y=0.8x-6
\\\\
10(y)=(0.8x-6)10
\\\\
10y=8x-60
\\\\
-8x+10y=-60
\\\\
8x-10y=60
\\\\
\dfrac{8x-10y}{2}=\dfrac{60}{2}
\\\\
4x-5y=30
.\end{array}
Hence, the different forms of the equation of the line with the given conditions are
\begin{array}{l}\require{cancel}
\text{slope-intercept form: }
y=0.8x-6
\\\\
\text{standard form: }
4x-5y=30
.\end{array}