#### Answer

$y=-\frac{5}{2}x-5$

#### Work Step by Step

A line in slope-intercept form has the equation:
$y=mx+b$ ($m=slope$, $b=y-intercept$)
We see from the table that the point $(0,-5)$ corresponds to the $y$-intercept. Thus $b=-5$.
To calculate the slope between points $(x_1,y_1)$ and $(x_2,y_2)$, we use the formula:
$slope=m=\frac{y_2-y_1}{x_2-x_1}$
We plug in the points $(0,-5)$ and $(2,-10)$:
$slope=m=\frac{-10--5}{2-0}=\frac{-5}{2}$
Thus the equation must be:
$y=-\frac{5}{2}x-5$