#### Answer

$\left( \dfrac{3}{2}, -6 \right)$

#### Work Step by Step

With the given points, then
\begin{array}{l}\require{cancel}
x_1=
2
,\\x_2=
1
,\\y_1=
-5
,\\y_2=
-7
.\end{array}
Using $\left( \dfrac{x_1+x_2}{2}, \dfrac{y_1+y_2}{2} \right)$ or the Midpoint Formula, then the midpoint of the line segment with the endpoints given above is
\begin{array}{l}\require{cancel}
\left( \dfrac{x_1+x_2}{2}, \dfrac{y_1+y_2}{2} \right)
\\\\=
\left( \dfrac{2+1}{2}, \dfrac{-5+(-7)}{2} \right)
\\\\=
\left( \dfrac{2+1}{2}, \dfrac{-5-7}{2} \right)
\\\\=
\left( \dfrac{3}{2}, \dfrac{-12}{2} \right)
\\\\=
\left( \dfrac{3}{2}, -6 \right)
.\end{array}