Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 10 - Exponents and Radicals - Test: Chapter 10: 14

Answer

$\sqrt[5]{y^2}$

Work Step by Step

Using the definition of rational exponents which is given by $a^{\frac{m}{n}}=\sqrt[n]{a^m}=\left(\sqrt[n]{a}\right)^m,$ the given expression is equivalent to \begin{array}{l}\require{cancel} \dfrac{\sqrt{y}}{\sqrt[10]{y}} \\\\= \dfrac{y^{1/2}}{y^{1/10}} .\end{array} Using the Quotient Rule of the laws of exponents which states that $\dfrac{x^m}{x^n}=x^{m-n},$ the expression above simplifies to \begin{array}{l}\require{cancel} \dfrac{y^{1/2}}{y^{1/10}} \\\\= y^{\frac{1}{2}-\frac{1}{10}} \\\\= y^{\frac{5}{10}-\frac{1}{10}} \\\\= y^{\frac{4}{10}} \\\\= y^{\frac{2}{5}} .\end{array} Using the definition of rational exponents which is given by $a^{\frac{m}{n}}=\sqrt[n]{a^m}=\left(\sqrt[n]{a}\right)^m,$ the given expression is equivalent to \begin{array}{l}\require{cancel} y^{\frac{2}{5}} \\\\= \sqrt[5]{y^2} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.