Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 10 - Exponents and Radicals - 10.6 Solving Radical Equations - 10.6 Exercise Set - Page 668: 41



Work Step by Step

Raising both sides to the fourth power results to \begin{array}{l}\require{cancel} 3(4-t)^{1/4}=6^{1/4} \\\\ \left( 3(4-t)^{1/4} \right)^4=\left( 6^{1/4} \right)^4 \\\\ 81(4-t)=6 .\end{array} Using the Distributive Property which is given by $a(b+c)=ab+ac,$ the expression above is equivalent to \begin{array}{l}\require{cancel} 81(4-t)=6 \\\\ 81(4)+81(-t)=6 \\\\ 324-81t=6 .\end{array} Using the properties of equality to isolate the variable results to \begin{array}{l}\require{cancel} 324-81t=6 \\\\ -81t=6-324 \\\\ -81t=-318 \\\\ t=\dfrac{-318}{-81} \\\\ t=\dfrac{106}{27} .\end{array} Upon checking, $ t=\dfrac{106}{27} $ satisfies the original equation.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.