Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 8 - Linear Differential Equations of Order n - 8.10 Chapter Review - Additional Problems - Page 575: 5

Answer

$(Ly)(x)=40x^7+x^4(480-40\cos x)+x^2(480+5\ln x)+\frac{2}{x}+\frac{2}{x^3}-\frac{\cos x}{x}$

Work Step by Step

Given $L=(x^2+1)D^3-(\cos x)D+5x^2$ with $y_1=\ln x+8x^5$ We first compute the appropriate derivatives $y'(x)=\frac{1}{x}+40x^4\\ y''(x)=-\frac{1}{x^2}+160x^3\\ y'''(x)=\frac{2}{x^3}+480x^2$ Hence $(Ly)(x)=(\ln x+8x^5)[(x^2+1)D^3-(\cos x)D+5x^2]=(x^2+1)(\frac{2}{x^3}+480x^2)-(\cos x)(\frac{1}{x}+40x^4)+5x^2(\ln x+8x^5)=40x^7+x^4(480-40\cos x)+x^2(480+5\ln x)+\frac{2}{x}+\frac{2}{x^3}-\frac{\cos x}{x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.