College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 8, Sequences and Series - Chapter 8 Review - Exercises - Page 641: 68

Answer

Prove that $p(1)$ is true. Prove that $p(k)$ true implies $p(k+1)$ true.

Work Step by Step

Let's note by $p(n)$ the property we want to prove: $$p(n):\text{ } \dfrac{1}{1\cdot 3}+\dfrac{1}{3\cdot 5}+\dfrac{1}{5\cdot 7}+\cdots+\dfrac{1}{(2n-1)(2n+1)}=\dfrac{n}{2n+1}.$$ $\textbf{Step 1:}$ Prove $p(1)$ is true. Set $n=1$ on each side and check if the property is verified: $$\begin{align*} \dfrac{1}{(2(1)-1)(2(1)+1)}&\stackrel{?}{=}\dfrac{1}{(2(1+1)}\\ \dfrac{1}{1\cdot 3}&\stackrel{?}{=}\dfrac{1}{3}\\ \dfrac{1}{3}&=\dfrac{1}{3}\checkmark. \end{align*}$$ Therefore $p(1)$ is true. $\textbf{Step 2:}$ Prove that if $p(k)$ is true, then $p(k+1)$ is true. We assumed $p(k)$ is true: $$p(k):\text{ } \dfrac{1}{1\cdot 3}+\dfrac{1}{3\cdot 5}+\dfrac{1}{5\cdot 7}+\cdots+\dfrac{1}{(2k-1)(2k+1)}=\dfrac{k}{2k+1}.\tag1$$ We have to prove: $$p(k+1):\text{ } \dfrac{1}{1\cdot 3}+\dfrac{1}{3\cdot 5}+\dfrac{1}{5\cdot 7}+\cdots+\dfrac{1}{(2k-1)(2k+1)}+\dfrac{1}{(2(k+1)-1)(2(k+1)+1)}=\dfrac{k+1}{2(k+1)+1}.$$ $$p(k+1):\text{ } \dfrac{1}{1\cdot 3}+\dfrac{1}{3\cdot 5}+\dfrac{1}{5\cdot 7}+\cdots+\dfrac{1}{(2k-1)(2k+1)}+\dfrac{1}{(2k+1)(2k+3)}=\dfrac{k+1}{2k+3}.\tag2$$ In Eq. $(1)$ add the term $\dfrac{1}{(2k+1)(2k+3)})$ on each side: $$\begin{align*} \dfrac{1}{1\cdot 3}+\dfrac{1}{3\cdot 5}+\dfrac{1}{5\cdot 7}+\cdots+\dfrac{1}{(2k-1)(2k+1)}+\dfrac{1}{(2k+1)(2k+3)}&=\dfrac{k}{2k+1}+\dfrac{1}{(2k+1)(2k+3)}\\ \dfrac{1}{1\cdot 3}+\dfrac{1}{3\cdot 5}+\dfrac{1}{5\cdot 7}+\cdots+\dfrac{1}{(2k-1)(2k+1)}+\dfrac{1}{(2k+1)(2k+3)}&=\dfrac{k(2k+3)+1}{(2k+1)(2k+3)}\\ \dfrac{1}{1\cdot 3}+\dfrac{1}{3\cdot 5}+\dfrac{1}{5\cdot 7}+\cdots+\dfrac{1}{(2k-1)(2k+1)}+\dfrac{1}{(2k+1)(2k+3)}&=\dfrac{2k^2+3k+1}{(2k+1)(2k+3)}\\ \dfrac{1}{1\cdot 3}+\dfrac{1}{3\cdot 5}+\dfrac{1}{5\cdot 7}+\cdots+\dfrac{1}{(2k-1)(2k+1)}+\dfrac{1}{(2k+1)(2k+3)}&=\dfrac{(2k+1)(k+1)}{(2k+1)(2k+3)}\\ \dfrac{1}{1\cdot 3}+\dfrac{1}{3\cdot 5}+\dfrac{1}{5\cdot 7}+\cdots+\dfrac{1}{(2k-1)(2k+1)}+\dfrac{1}{(2k+1)(2k+3)}=\dfrac{k+1}{2k+3}. \end{align*}$$ We got Eq. $(2)$, therefore if $p(k)$ is true, then $p(k+1)$ is also true. Both steps being proved, the given formula is true for any natural number $n$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.